A/O法一體化污水處理裝置
處理污水、采購污水處理設備,一站式服務廠家:濰坊魯盛水處理設備有限公司。
廠家專車送貨、本地有我們安裝、售后人員,服務更放心。
處理生活污水、化糞池污水、醫療污水、各種洗滌污水、各種屠宰污水、噴漆廢水、各種養殖污水、食品污水、各種生產污水等。
廠家生產產品:地埋式一體化污水處理設備、氣浮機、二氧化氯發生器、斜管沉淀設備、加藥裝置、玻璃鋼設備、疊螺污泥脫水機、機械格柵、壓濾機等。
生物膜法是一種高效的廢水處理方法,具有污泥量少,不會引起污泥膨脹,對廢水的水質和水量的變動具有較好的適應能力,運行管理簡單等特點。生物膜法是使微生物附著在載體表面上并形成生物膜,當污水流經載體表面時,污水中的有機物及溶解氧向生物膜內部擴散。膜內微生物在有氧存在的情況下對有機物進行分解代謝和機體合成代謝,同時分解的代謝產物從生物膜擴散到水相和空氣中,從而使廢水中的有機物得以降解。
生物膜法中生物膜的形成與那些因素有關?
活性污泥法和生物膜法的區別不僅僅是微生物的懸浮與附著之分,更重要的是擴散過程在生物膜處理系統中是一個必須考慮的因素。在生物膜反應器中,有機污染物、溶解氧及各種必須的營養物質首先要從液相擴散到生物膜表面,進而進到生物膜內部,只有擴散到生物膜表面或內部的污染物才有可能被生物膜內微生物分解與轉化,終形成各種代謝產物。另外,在生物膜反應器中,由于微生物被固定在載體上,從而實現了SRT與HRT(水力停留時間)的分離,使得增殖速率慢的微生物也能生長繁殖。因此,生物膜是一穩定的、多樣的微生物生態系統。
微生物在載體上的掛膜可分為微生物吸附和固著生長兩個階段。
生物膜的形成與載體表面性質(載體表面親水性、表面電荷、表面化學組成和表面粗糙度)、微生物的性質(微生物的種類、培養條件、活性和濃度)及環境因素(PH值、離子強度、水力剪切力、溫度、營養條件及微生物與載體的接觸時間)等因素有關。
1、載體表面性質
載體表面電荷性、粗糙度、粒徑和載體濃度等直接影響著生物膜在其表面的附著、形成。在正常生長環境下,微生物表面帶有負電荷。如果能通過一定的改良技術,如化學氧化、低溫等離子體處理等可使載體表面帶有正電荷,從而可使微生物在載體表面的附著、形成過程更易進行。載體表面的粗糙度有利于細菌在其表面附著、固定。
一方面,與光滑表面相比,粗糙的載體表面增加了細菌與載體間的有效接觸面積;另一方面載體表面的粗糙部分,如孔洞、裂縫等對已附著的細菌起著屏蔽保護作用,使它們免受水力剪切力的沖刷。
研究認為,相對于大粒徑載體而言,小粒徑載體之間的相互摩擦小,比表面積大,因而更容易生成生物膜。另外,載體濃度對反應器內生物膜的掛膜也很重要。Wagner在用氣提式反應器處理難降解物廢水時發現,在載體質量濃度很低情況下,即使生物膜厚達295μm,還是不能達到穩定的去除率。但是,在載體濃度為20-30g/L時,即使只有20%的載體上有75μn厚的生物膜,反應器依然能達到穩定的(98%)去除率,COD負荷zui高可達58kg/(m3·d)。
2、懸浮微生物濃度
在給定的系統中,懸浮微生物濃度反映了微生物與載體間的接觸頻度。一般來講,隨著懸浮微生物濃度的增加,微生物與載體間可能接觸的幾率也增加。許多研究結果表明,在微生物附著過程中存在著一個臨界的懸浮微生物濃度;隨著微生物濃度的增加,微生物借助濃度梯度的運送得到加強。
在臨界值以前,微生物從液相傳送、擴散到載體表面是控制步驟,一旦超過此臨界值,微生物在載體表面的附著、固定受到載體有效表面積的限制,不再依賴于懸浮微生物的濃度。但附著固定平衡后,載體表面微生物的量是由微生物及載體表面特性所決定的。
生物膜法中生物膜的形成與那些因素有關?
3、懸浮微生物的活性
微生物的活性通常可用微生物的比增長率(μ)來描述,即單位質量微生物的增長繁殖速率。因此,在研究微生物活性對生物膜形成的初階段的影響時,關鍵是如何控制懸浮微生物的比增長率。研究結果表明,硝化細菌在載體表面的附著固定量及初始速率均正比于懸浮硝化細菌的活性。研究異養生物膜的形成時也得出同樣結果。影響懸浮微生物活性的因素主要有如下幾種。
(1)當懸浮微生物的生物活性較高時,其分泌胞外多聚物的能力較強。這種粘性的胞外多聚物在細菌與載體之間起到了生物粘合劑的作用,使得細菌易于在載體表面附著、固定;
(2)微生物所處的能量水平直接與它們的增長率相關。當盧增加時,懸浮微生物的動能隨之增加。這些能量有助于克服在固定化過程中微生物載體表面間的能壘,使得細菌初始積累速率與懸浮細菌活性成正比。
(3)微生物的表面結構隨著其活性的不同而相應變化。Herben等人研究發現,懸浮細菌活性對細菌在載體表面的附著固定過程有影響,而且,細菌表面的化學組成、官能團的量也隨細菌活性的變化有顯著變化。同時,Wastson等人的研究表明,細胞膜等隨懸浮細菌活性的變化而有顯著變化。細菌表面的這些變化將直接影響微生物在載體表面的附著、固定。因此,通常認為,由懸浮微生物活性變化而引起的細菌表面生理狀態或分子組成的變化是有利于細菌在載體表面附著、固定的。
活性污泥的培養馴化操作
1.好氧池活性污泥培養馴化
(1)污泥的培養
將EMO高效菌種用污水稀釋搗碎,慮出其中中的雜質,投放好氧池中,投放時好氧池水位調整至正常水位的1/2左右,投加完畢后,將好氧池中污水水位增至正常水位,投加菌種時曝氣系統開始進行運行,并進行悶曝(即在不進水和不排水的條件下,連續不斷的曝氣),經過數小時后,停止曝氣,沉淀排掉半池上清夜,再加入污水,悶曝數小時后,停止曝氣,沉淀排掉半池上清夜,再加入污水,重復進行悶曝換水,期間注意觀察污泥的性狀,以及溶氧的控制,保持在2—4mg/L間。直到出現模糊狀具有絮凝性的污泥。培養期間主要采用生活污水,如為工業污水,需注意污水中各營養物質平衡比例。
當好氧池出現污泥絨絮后,就間歇地往曝氣池投加污水,往曝氣池投加的水量,應保證池內的水量能每天更換池體容積的1/2,隨著培養的進展,逐漸加大水量使在培養后期達到每天更換一次。在曝氣池出水進入二次沉淀池2小時左右就開始回流污泥。
(2)污泥的馴化
在進水中逐漸增加被處理的污水的比例,或提高濃度,使生物逐漸適應新的環境開始時,被處理污水的加入量可用曝氣池設計負荷的20-30%,達到較好的處理效率后,再繼續增加,每次增加負荷后,須等生物適應鞏固后再繼續增加,直至滿負荷為止。
2.厭氧池污泥的培養馴化
(1)、將EMO高效菌種用污水稀釋搗碎,慮出其中中的雜質,將厭氧池中的污水提升到正常水位的1/2水位處,將池中的污水厭氧1—2天(配合后面好氧段的污泥培養);
(2)、開始采用間歇進水,污泥負荷率控制在0.05~0.2kgCOD/(kgVSS.d)。
(3)、當污泥逐漸適應廢水性質后,污泥逐漸就具有了去除有機物的能力。當COD去除率達到30%以上后,可以逐步提高進水容積負荷率,每次提高容積負荷率的幅度以0.5kgCOD/(m3.d)左右為宜,此時可以由間歇進水過渡到連續進水,但應控制進水濃度和進水量,保持穩定的增長。
(4)、隨著負荷的提高,反應器內的污泥逐漸由松散狀態變成沉淀性能較好的絮體,污泥的產甲烷活性也相應提高。
(5)、在調試過程中要保證系統的負荷以20%~30%的增長速率穩定增長,每次調整負荷應保證去除率達到30%后穩定3~4d,然后再提高負荷。
化學藥劑的投加
(1)磷酸鹽投加入調節池,以調節污水中的營養平衡;
(2)純堿投加入好氧池,以調節池中污水的酸堿度;
(3絮凝劑投加入氣浮池,以提高出去污水中的懸浮物和油。投加入污泥脫水系統,起助凝和調理污泥性質的作用。
A/O法一體化污水處理裝置活性污泥的異常情況及對策
污泥膨脹:正常活性污泥沉降性能良好,含水率在98%以上。當污泥變質時,污泥不易沉淀,SVI值較高,污泥結構松散和體積膨脹,顏色也有異變,這就是污泥膨脹。污泥膨脹主要是絲狀菌大量繁殖所引起的。一般污水中碳水化合物較多,缺乏氮、磷、鐵等養料,溶解氧不足,水溫高或PH值較低都容易引起大量絲狀菌繁殖,導致污泥膨脹,此外,超負荷、污泥齡過長或有機物濃度剃度過小等,也會引起污泥膨脹,排泥不暢則易引起結合水性污泥膨脹。
為防止污泥膨脹,首先應加強操作管理,經常監測污水水質、曝氣池溶解氧、污泥沉降比、污泥指數和進行顯微鏡觀察等,如發現不正常現象,就需要采取預防措施,一般可調整、加大曝氣量,及時排泥,有可能采取分段進水,以減輕二沉池的負荷。發生污泥膨脹解決的辦法是針對引起污泥膨脹的原因采取措施,當缺氧或水溫高等可以加大曝氣量或降低進水量以減輕污泥負荷,或適當降低污泥濃度,使需氧降低等,如污泥負荷過高可適當提高污泥濃度,以調整負荷,必要時還要停止進水,悶曝一段時間。如缺氮、磷、鐵等養料,要投加硝化污泥或氮、磷、鐵等,如PH過低,可投加石灰等調PH,若污泥流失量大,可投加氯化鐵,幫助凝聚,刺激菌膠團生長,也可投加漂白粉或ye氯,抑制絲狀菌生長,特別能控制結合水性污泥膨脹。也可投加石棉粉末、硅藻土、粘土等惰性物質,降低污泥指數。
常見的農村污水處理工藝
1.傳統模式
傳統污水處理工藝如A/O、A2O、SBR、CASS、生物接觸氧化等,特點是技術成熟、工藝運行穩定,應用條件要求在污水收集管網建設較為完備、運行維護資金充足的地區。
(1)A20污水處理工藝
優點:在厭氧(缺氧)、好氧交替運行條件下,絲狀菌不能大量增殖,基本無污泥膨脹問題;不需外加碳源,兩個A段只用輕緩攪拌,運行費用較低;工藝簡單,總的水力停留時間少于其他同類工藝。
缺點:脫氮效果不能滿足較高要求;由于受污泥增長限制,除磷效果較難提高;沉淀池設計有特殊要求,含磷污泥停留時間不能太短;運行費用較高,管理復雜。